

$5^{\text {th }}$ Grade Math

Mission 2: Multi-Digit Whole Number and Decimal Fraction Operations

Math Parent Letter

Mission 2 covers Multi-Digit Whole Number and Decimal
Fraction Operations. This newsletter will address decimal multidigit multiplication.

Topic C. Decimal Multi-Digit Multiplication

Words to know

- Product
- Estimate
- Decimal Fraction
- Factor
- Standard Algorithm

Things to Remember:

- A decimal fraction uses a point to separate the whole number part from the fractional part of a number. Example: in the number 36.9 the point separates the 36 (the whole number part) from the 9 (the fractional part, which really means 9 tenths). So 36.9 is 36 and nine tenths.
- When multiplying by a decimal fraction, you convert the decimal fraction to a whole number by multiplying it by a power of 10 (10 or 100) depending on the number of places after the decimal point. The problem now resembles a whole number multiplication problem. Once you finish multiplying, you then have to divide the answer by the same power of 10 you multiplied by.
- If the decimal fraction has one place after the decimal, you multiply by 10. The digits will then shift one place to the left. The result is a number that is 10 times greater than the original number. If the decimal has two places after the decimal, you multiply by 100 . The digits will shift two places to the left. The result is a number that is 100 times greater than the original number.
- When a number is divided by 10 , the digits shift one place to the right. The result is a number that is $\frac{1}{10}$ as large as the original number. When a number is divided by 100 , the digits shift two places to the right. The result is a number that is $\frac{1}{100}$ as large as the original number.

Objectives of Topic C

- Multiply decimal fractions with tenths by multi-digit whole numbers using place value understanding to record partial products.
- Multiply decimal fractions by multi-digit whole numbers through conversion to a whole number problem and reasoning about the placement of the decimal.
- Reason about the product of a whole number and a decimal with hundredths using place value understanding and estimation.

Focus Area- Topic C

Mission 2: Multi-Digit Whole Number and Decimal Fraction Operations

Problem 2
Round the factors to estimate the products. (Symbol \approx means about)
Solve

$$
\begin{aligned}
& 7.5 \times 52 \quad 17.6 \times 22 \quad 95 \times 3.3 \\
& \approx 8 \times 50 \quad \approx 18 \times 20 \quad \approx 100 \times 3 \\
& =400=360=300
\end{aligned}
$$

Problem 3
Estimate the product. Solve using an area model and the standard algorithm.

Solve: 4.7 x 24

$$
\left.\begin{array}{r}
4.7 \times 24 \\
\approx 5 \times 20
\end{array}\right\} \text { Estimation }
$$

Standard Algorithm

4.7	
$\times 24$	
	47
$\times 24$	
$\times 188$	
+940	
1128	
	$1128 \div 10=112.8$

When we compare our answer (112.8) to our estimate (100), we can conclude that our answer is reasonable.

Example Problems and Answers
Pat rides his bike a total of 6.83 miles to and from school every day. How many miles does he ride in 25 days?
17075

$$
17075 \div 100=\underline{170.75}
$$

Pat rides his bike a total of 170.75 miles in 25 days.

A. Courtney buys 79 protractors at $\$ 1.09$ each and 32 composition notebooks at $\$ 2.19$ each. About how much money did she spend?
$\$ 1.09$ per protractor x 79 protractors $\approx \$ 1 \times 80=\$ 80$
$\$ 2.19$ per notebook x 32 notebooks $\approx \$ 2 \times 30=\$ 60$
$\$ 80+\$ 60=\$ 140$

Courtney spent about $\$ 140$ on protractors and notebooks.

B. How much money did she actually spend?
$79 \times \$ 1.09$

| $\$ 1.09(\mathrm{x} 100)$ |
| :--- | :--- |
| x 79 |\longrightarrow| 109 |
| :---: |
| x 79 |$\quad 32 \times \$ 2.19$

$\$ 86.11$ cost of protractors
$+\$ 70.08$ cost of notebooks
$\$ \$ 156.19$ total cost of sumblie

Courtney actually spent \$156.19.

A kitchen measures 32 feet by 17 feet. If tile cost $\$ 7.98$ per square foot, what is the total cost of putting tile in the kitchen?

$$
\begin{array}{cc}
\$ 7.98(\times 100) & \longrightarrow \\
\times 544 \\
& \\
& \times 544 \\
3192 \\
31920 \\
+ & 399000 \\
\hline 434112 \\
434112 \div 100=\$ 4,341.12
\end{array}
$$

The total cost of putting tile in the kitchen is \$4,341.12
Note: Area refers to the number of square units needed to cover the inside of a shape. To determine the area of this rectangle you multiply the length times the width. The formula for area is Area =length \boldsymbol{x} width.

