(Permission granted for reprint from
Grade 5, Mission 3, Topic C
Lafavette Parish School Svstem)

$5^{\text {th }}$ Grade Math

Mission 3: Addition and Subtraction of Fractions

Math Parent Letter

Mission 3, Topic C covers Addition and Subtraction of
Fractions. This newsletter will discuss Mission 3, Topic C.

Topic C: Making Like Units Numerically

Words to know:

- equivalence
- difference
- numerically
- mixed number
- sum
- improper fraction

Things to Remember!!!

- Equivalence - being equal, having the same value
- Numerically - using numbers
- Sum - the answer to an addition problem
- Difference - the answer to a subtraction problem
- Number Line - a line used to show placement of whole numbers, fractions, and mixed numbers
- Mixed Number - a whole number plus a fraction smaller than 1 , written without the + sign, e.g. $5 \frac{3}{4}$ means $5+\frac{3}{4}$
- Improper Fraction - a fraction with the numerator equal to or greater than the denominator

OBJECTIVES OF TOPIC C

- Add fractions to and subtract fractions from whole numbers using equivalence and the number line as strategies.
- Add fractions making like units numerically.
- Add fractions with sums greater than 2.
- Subtract fractions making like units numerically.
- Subtract fractions greater than or equal to 1 .

Focus Area- Topic C: Making Like Units

Problem 1: $2+2 \frac{1}{2}=4 \frac{1}{2}$
Step 1: Add the whole numbers.
Step 2: Add the fraction.

Problem 2: $\quad 4-2 \frac{3}{4}=1 \frac{1}{4}$
Step 1: Subtract the whole numbers.
Step 2: Subtract the fraction.

Step 2: Add fractions.

Problem 4: $\longrightarrow 7 \frac{5}{8}+8 \frac{2}{5}$
Step 1: Add the whole numbers.
$=7+8+\frac{5}{8}+\frac{2}{5}$
Step 2: Make like units numerically.

Step 3: Add fractions.
$=15+\left(\frac{5 \times 5}{8 \times 5}\right)+\left(\frac{2 \times 8}{5 \times 8}\right)$
$=15+\frac{25}{40}+\frac{16}{40}$
Step 4: If sum is an improper fraction, rename fraction as a mixed number.

Step 5: Add whole number to fraction.

Step 6: Simplify sum if
$=15+\frac{41}{40}$
$=15+1+\frac{1}{40}$
$=16 \frac{1}{40}$ possible.

Problem 5: $\quad 5 \frac{2}{3}-2 \frac{1}{2}$

$$
\begin{array}{ll}
=(5-2)+\frac{2}{3}-\frac{1}{2} & \\
=3+\frac{2}{3}-\frac{1}{2} & \text { (Step 1: Subtract the whole numbers.) } \\
=\left(3-\frac{1}{2}\right)+\frac{2}{3} & \text { (Step 2: Subtract the second fraction from the whole number.) } \\
=2 \frac{1}{2}+\frac{2}{3} & \text { (Step 3: Make like units numerically.) } \\
=2+\left(\frac{1 x 3}{2 x 3}\right)+\left(\frac{2 x 2}{3 x 2}\right) & \\
=2+\frac{3}{6}+\frac{4}{6} & \text { (Step 4: Add the fractions.) } \\
=2+\frac{7}{6} & \text { (Step 5: If sum of the fractions is an improper fraction, rename as a whole or mixed number.) } \\
=2+1+\frac{1}{6} & \text { (Step 6: Add fraction to whole numbers.) Simplify fraction if possible.) }
\end{array}
$$

Problem 6: Mrs. Sanchez made $7 \frac{4}{5}$ gallons of punch for a party. If there were $10 \frac{1}{2}$ gallons in the mixture, how many gallons did she have left in the mixture?

$$
\begin{aligned}
& 10 \frac{1}{2}-7 \frac{4}{5} \\
= & (10-7)+\frac{1}{2}-\frac{4}{5} \\
= & 3+\frac{1}{2}-\frac{4}{5} \\
= & \left(3-\frac{4}{5}\right)+\frac{1}{2} \\
= & 2 \frac{1}{5}+\frac{1}{2} \\
= & 2+\left(\frac{1 x 2}{5 \times 2}\right)+\left(\frac{1 x 5}{2 \times 5}\right) \\
= & 2+\frac{2}{10}+\frac{5}{10}=2 \frac{7}{10}
\end{aligned}
$$

There are $2 \frac{7}{10}$ gallons of Mrs. Sanchez's punch mixture left.
Problem 7: Bryant has a goal to drink at least $6 \frac{1}{2}$ quarts of water during his day of training for the big marathon race. On his first break he drank $1 \frac{3}{4}$ quarts, and during his second break he had another $2 \frac{1}{5}$ quarts. How many quarts of water should Bryant drink on his last break of the day to reach his goal?

$$
\begin{gathered}
6 \frac{1}{2}-\left(1 \frac{3}{4}+2 \frac{1}{5}\right)=6 \frac{1}{2}-\left(3 \frac{3}{4}+\frac{1}{5}\right)=6 \frac{1}{2}-\left(3+\frac{3 \times 5}{4 \times 5}+\frac{1 \times 4}{5 \times 4}\right)=6 \frac{1}{2}-\left(3+\frac{15}{20}+\frac{4}{20}\right) \\
6 \frac{1}{2}-3 \frac{19}{20}=(6-3)+\frac{1}{2}-\frac{19}{20}=3+\frac{1}{2}-\frac{19}{20}=\left(3-\frac{19}{20}\right)+\frac{1}{2} \\
2 \frac{1}{20}+\frac{1}{2}=2+\left(\frac{1 \times 2}{20 \times 2}\right)+\left(\frac{1 \times 20}{2 \times 20}\right)=2+\frac{2}{40}+\frac{20}{40}=2 \frac{22}{40}=2 \frac{22 \div 2}{40 \div 2}=2 \frac{11}{20} \\
\text { Or } \quad 2 \frac{1}{20}+\frac{1}{2}=2+\left(\frac{1 \times 1}{20 \times 1}\right)+\left(\frac{1 \times 10}{2 \times 10}\right)=2+\frac{1}{20}+\frac{10}{20}=2 \frac{11}{20}
\end{gathered}
$$

Students do not have to use the least common denominator. They are just expected to create common denominators. In the end the answers will be the same.

Bryant should drink $2 \frac{11}{20}$ quarts of water to reach his goal.
**** The strategy above is a possible approach. The student could have first added $1 \frac{3}{4}+2 \frac{1}{5}$. Then take the sum and subtract from $6 \frac{1}{2}$.

$5^{\text {th }}$ Grade Math

Mission 3: Addition and Subtraction of Fractions

Math Parent Letter

Mission 3, Topic D uses reasoning to estimate the value of expressions, strategize to solve problems involving more than two fractions, and assess the reasonableness of their solutions to word problems.

Topic D: Further Applications

Words to know:

- expression
- benchmark fraction
- sum
- solution

Things to Remember!

- Expression - a group of numbers and symbols that shows a mathematical relationship
Example: $\frac{1}{3}+\frac{3}{4}+\frac{2}{3}$
- Symbol for meaning 'about' - \approx
- Benchmark fraction $-\frac{1}{2}$ is a benchmark fraction when comparing fractions
Example: $\frac{1}{3}$ and $\frac{5}{8} \quad \frac{1}{3}$ is less than $\frac{1}{2}$ or $\frac{1}{3}<\frac{1}{2}$

$$
\frac{5}{8} \text { is greater than } \frac{1}{2} \text { or } \frac{5}{8}>\frac{1}{2}
$$

Therefore $\frac{1}{3}$ is less than $\frac{5}{8}$ or $\frac{1}{3}<\frac{5}{8}$.

OBJECTIVES OF TOPIC D

- Use fraction benchmark numbers to assess reasonableness of addition and subtraction equations.
- Strategize to solve multi-term problems.
- Solve multi-step word problems; assess reasonableness of solutions using benchmark numbers.
- Explore part to whole relationships.

Focus Area- Topic D

Mission 3: Addition and Subtraction of Fractions
Use benchmark fraction to estimate the value of expressions:
Example 1: $\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{3}}{\mathbf{4}}>\mathbf{1} \leftrightharpoons \begin{aligned} & \text { We know that } \frac{1}{2}+\frac{1}{2}=1 . \\ & \text { Since } \frac{3}{4} \text { is more than half } \\ & \text { and we are adding } \frac{1}{2} \\ & \text { more, the sum will be } \\ & \text { greater than 1. }\end{aligned}$

Example 2: $\frac{4}{10}+\frac{1}{3}<1$ and $\frac{4}{10}+\frac{1}{3}<\frac{1}{2}$
Since $\frac{4}{10}$ and $\frac{1}{3}$ are less than half, the sum will be less than 1 .

$$
\frac{4}{10}+\frac{1}{3}<1
$$

Also $\frac{4}{10}$ needs $\frac{1}{10}$ to be a half. $\frac{1}{3}$ of a whole is greater than $\frac{1}{10}$ of the same whole, so adding $\frac{1}{3}$ more to $\frac{4}{10}$ will give us a sum greater than $\frac{1}{2}$. $\frac{4}{10}+\frac{1}{3}>\frac{1}{2}$

Example 3: $1 \frac{2}{5}-\frac{2}{3}<1$
We know $\frac{2}{5}$ is less than $\frac{1}{2}$ and $\frac{2}{3}$ is greater than $\frac{1}{2}$. We can't subtract $\frac{2}{3}$ from $\frac{2}{5}$ since $\frac{2}{3}$ is larger so we'll need to subtract $\frac{2}{3}$ from the one whole. 1- $\frac{2}{3}=\frac{3}{3}-\frac{2}{3}=\frac{1}{3}$
Since $\frac{1}{3}$ and $\frac{2}{5}$ are both less than half, we know when we combine the two fractions the answer will be less than 1 .

Problem: Use >, < or = to make the following statement true.

$$
\begin{aligned}
& 4 \frac{9}{10}-1 \frac{1}{8} \quad-\quad 2 \frac{1}{2}+\frac{2}{7} \\
& \underset{\approx 5}{\downarrow} \underset{\sim}{\downarrow} \underset{1}{\downarrow} \quad \begin{array}{c}
\downarrow \\
\frac{1}{2} \\
\frac{2}{7}<\frac{1}{2}
\end{array} \\
& 4 \frac{9}{10}-1 \frac{1}{8} \approx 4 \quad 2 \frac{1}{2}+\frac{2}{7} \approx 2 \frac{1}{2} \\
& 4 \frac{9}{10}-1 \frac{1}{8}>2 \frac{1}{2}+\frac{2}{7}
\end{aligned}
$$

Strategize to solve an addition or subtraction problem involving more than 2 fractions and/or mixed numbers.

Example 1: $\frac{2}{3}+\frac{1}{5}+\frac{1}{3}+1 \frac{4}{5}$

This problem is adding thirds and fifths.
The most efficient approach would be to first add the like units together. Then combine the sums.

Example 2: $4 \frac{\mathbf{5}}{6}-\frac{\mathbf{1}}{\mathbf{2}}-\frac{\mathbf{5}}{\mathbf{6}}-1 \frac{\mathbf{1}}{\mathbf{2}} \quad$ In this problem we are subtracting $\frac{1}{2}, \frac{5}{6}$ and $1 \frac{1}{2}$ from $4 \frac{5}{6}$. We begin by subtracting $\frac{5}{6}$ from $4 \frac{5}{6}$. Now you don't subtract $\frac{1}{2}$ from $1 \frac{1}{2}$. Remember we are subtracting both $\frac{1}{2}$ and $\frac{1}{2}$ from what is
left. So we add $\frac{1}{2}$ and $1 \frac{1}{2}$. The sum of 2 is subtracted from the 4 .

Application Problem:

During lunch, Chris drinks $2 \frac{3}{4}$ cups of milk. Allie drinks $\frac{3}{8}$ cup of milk. Carmen drinks $\frac{1}{4}$ cup of milk. How much milk do the 3 students drink?

$$
3+\frac{3}{8}=3 \frac{3}{8}
$$

Chris, Allie, and Carmen drank $3 \frac{3}{8}$ cups of milk.

Assess Reasonableness of Solution:

John used $1 \frac{3}{4} \mathrm{~kg}$ of salt to melt the ice on his sidewalk. He then used another $3 \frac{4}{5} \mathrm{~kg}$ on the driveway. If he originally bought 10 kg of salt, how much does he have left? (This is an example of a multi-step problem.)
Assess reasonableness of answer:

$$
1 \frac{3}{4}+3 \frac{4}{5} \quad 10-6=4 \quad 4 \frac{9}{20} \text { falls between } 4 \text { and } 5 . \text { Since } 4 \frac{9}{20}
$$

$$
\approx 2+4 \quad \text { is less than half, } 4 \frac{9}{20} \text { is closer to } 4
$$

$$
\begin{array}{ll}
=6 & \text { than } 5 \text { which we can say the solution } \\
\text { is reasonable. }
\end{array}
$$

is reasonable.

$$
\begin{aligned}
& \text { Possible Approach: }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { N } \\
\text { N } \\
\text { 会 } \\
=5 \mathrm{~kg}-5 \frac{11}{20} \mathrm{~kg} \\
=4 \frac{9}{20}
\end{array}
\end{aligned}
$$

