

Grade 5, Mission 3, Topic C

Lafavette Parish School System)

5th Grade Math

Mission 3: Addition and Subtraction of Fractions

Math Parent Letter

Mission 3, Topic C covers Addition and Subtraction of Fractions. This newsletter will discuss Mission 3, Topic C.

Topic C: Making Like Units Numerically

Words to know:

- equivalence
- sum

.

- difference
- numerically
- mixed number
- improper fraction

Things to Remember!!!

- Equivalence being equal, having the same value
- Numerically using numbers
- Sum the answer to an addition problem
- Difference the answer to a subtraction problem
- Number Line a line used to show placement of whole numbers, fractions, and mixed numbers
- Mixed Number a whole number plus a fraction smaller than 1, written without the + sign, e.g. $5\frac{3}{4}$ means $5 + \frac{3}{4}$
- Improper Fraction a fraction with the numerator equal to or greater than the denominator

OBJECTIVES OF TOPIC C

- Add fractions to and subtract fractions from whole . numbers using equivalence and the number line as strategies.
- Add fractions making like units numerically.
- Add fractions with sums greater than 2.
- Subtract fractions making like units numerically.
- Subtract fractions greater than or equal to 1.

Focus Area- Topic C: Making Like Units

Problem 1: 2 + $2\frac{1}{2} = 4\frac{1}{2}$

Step 1: Add the whole numbers. Step 2: Add the fraction.

4 - $2\frac{3}{4} = 1\frac{1}{4}$ Problem 2:

Step 1: Subtract the whole numbers. Step 2: Subtract the fraction.

Problem 3:	\rightarrow	$\frac{3}{4} - \frac{1}{5} =$	$\left(\frac{3x5}{4x5}\right)$	$+\left(\frac{1x4}{5x4}\right)$
Step 1: Make like units numerically.			15 20	$+ \frac{\frac{14}{20}}{10} = \frac{19}{20}$

Step 2: Add fractions.

Problem 4:	$\rightarrow 7\frac{5}{8} + 8\frac{2}{5}$
Step 1 : Add the whole numbers.	$=7+8+\frac{5}{8}+\frac{2}{5}$
Step 2: Make like units numerically.	$= 15 + \left(\frac{5 \times 5}{8 \times 5}\right) + \left(\frac{2 \times 8}{5 \times 8}\right)$
Step 3: Add fractions.	$= 15 + \frac{25}{40} + \frac{16}{40}$
Step 4 : If sum is an improper fraction, rename fraction as a mixed	$= 15 + \frac{41}{40}$
number. Step 5 : Add whole	$= 15 + 1 + \frac{1}{40}$
number to fraction.	$= 16 \frac{1}{40}$
Step 6 : Simplify sum if possible.	

Problem 5:	$5\frac{2}{3} - 2\frac{1}{2}$	
	$= (5-2) + \frac{2}{3} - \frac{1}{2}$	(Step 1: Subtract the whole numbers.)
	$= 3 + \frac{2}{3} - \frac{1}{2}$	
	$= (3-\frac{1}{2})+\frac{2}{3}$	(Step 2: Subtract the second fraction from the whole number.)
	$= 2\frac{1}{2} + \frac{2}{3}$	(Step 3: Make like units numerically.)
	$= 2 + \left(\frac{1x3}{2x3}\right) + \left(\frac{2x2}{3x2}\right)$	
	$= 2 + \frac{3}{6} + \frac{4}{6}$	(Step 4: Add the fractions.)
	$= 2 + \frac{7}{6}$	(Step 5: If sum of the fractions is an improper fraction, rename as a whole or mixed number.)
	$=$ 2 + 1 + $\frac{1}{6}$	(Step 6: Add fraction to whole numbers.)
	$= 3\frac{1}{6}$	(Step 7: Simplify fraction if possible.)

Problem 6: Mrs. Sanchez made $7\frac{4}{5}$ gallons of punch for a party. If there were $10\frac{1}{2}$ gallons in the mixture, how many gallons did she have left in the mixture?

$$10\frac{1}{2} - 7\frac{4}{5}$$

$$= (10 - 7) + \frac{1}{2} - \frac{4}{5}$$

$$= 3 + \frac{1}{2} - \frac{4}{5}$$

$$= (3 - \frac{4}{5}) + \frac{1}{2}$$

$$= 2\frac{1}{5} + \frac{1}{2}$$

$$= 2 + (\frac{1x2}{5x2}) + (\frac{1x5}{2x5})$$

$$= 2 + \frac{2}{10} + \frac{5}{10} = 2\frac{7}{10}$$
There are $2\frac{7}{10}$ gallons of Mrs. Sanchez's punch mixture left.

Problem 7: Bryant has a goal to drink at least $6\frac{1}{2}$ quarts of water during his day of training for the big marathon race. On his first break he drank $1\frac{3}{4}$ quarts, and during his second break he had another $2\frac{1}{5}$ quarts. How many quarts of water should Bryant drink on his last break of the day to reach his goal?

$$6\frac{1}{2} - \left(1\frac{3}{4} + 2\frac{1}{5}\right) = 6\frac{1}{2} - \left(3\frac{3}{4} + \frac{1}{5}\right) = 6\frac{1}{2} - \left(3 + \frac{3x5}{4x5} + \frac{1x4}{5x4}\right) = 6\frac{1}{2} - \left(3 + \frac{15}{20} + \frac{4}{20}\right)$$

$$6\frac{1}{2} - 3\frac{19}{20} = (6 - 3) + \frac{1}{2} - \frac{19}{20} = 3 + \frac{1}{2} - \frac{19}{20} = (3 - \frac{19}{20}) + \frac{1}{2}$$

$$2\frac{1}{20} + \frac{1}{2} = 2 + \left(\frac{1x2}{20x2}\right) + \left(\frac{1x20}{2x20}\right) = 2 + \frac{2}{40} + \frac{20}{40} = 2\frac{22}{40} = 2\frac{22+2}{40+2} = 2\frac{11}{20}$$
Or
$$2\frac{1}{20} + \frac{1}{2} = 2 + \left(\frac{1x1}{20x1}\right) + \left(\frac{1x10}{2x10}\right) = 2 + \frac{1}{20} + \frac{10}{20} = 2\frac{11}{20}$$
Bryant should drink $2\frac{11}{20}$ quarts of water to reach his goal.

Students do **not** have to use the least common denominator. They are just expected to create common denominators. In the end the answers will be the same.

**** The strategy above is a possible approach. The student could have first added $1\frac{3}{4} + 2\frac{1}{5}$. Then take the sum and subtract from $6\frac{1}{2}$.

Grade 5, Mission 3, Topic D

(Permission granted for reprint from Lafavette Parish School System)

5th Grade Math

Mission 3: Addition and Subtraction of Fractions

Math Parent Letter

Mission 3, Topic D uses reasoning to estimate the value of expressions, strategize to solve problems involving more than two fractions, and assess the reasonableness of their solutions to word problems.

Topic D: Further Applications

Words to know:

- expression
- benchmark fraction
- sum
- reasonablenessdifference

estimate/about

- solution
- Things to Remember!
- Expression a group of numbers and symbols that shows a mathematical relationship Example: ¹/₃ + ³/₄ + ²/₃
- Symbol for meaning **'about'** ≈
- **Benchmark fraction** $\frac{1}{2}$ is a benchmark fraction when comparing fractions

Example: $\frac{1}{3}$ and $\frac{5}{8}$ $\frac{1}{3}$ is less than $\frac{1}{2}$ or $\frac{1}{3} < \frac{1}{2}$ $\frac{5}{8}$ is greater than $\frac{1}{2}$ or $\frac{5}{8} > \frac{1}{2}$

Therefore $\frac{1}{3}$ is less than $\frac{5}{8}$ or $\frac{1}{3} < \frac{5}{8}$.

OBJECTIVES OF TOPIC D

- Use fraction benchmark numbers to assess reasonableness of addition and subtraction equations.
- Strategize to solve multi-term problems.
- Solve multi-step word problems; assess reasonableness of solutions using benchmark numbers.
- Explore part to whole relationships.

Focus Area- Topic D

Mission 3: Addition and Subtraction of Fractions

Use benchmark fraction to estimate the value of expressions:

Example 1:
$$\frac{1}{2} + \frac{3}{4} > 1$$
 We k
Since
and v
more
great

We know that $\frac{1}{2} + \frac{1}{2} = 1$. Since $\frac{3}{4}$ is more than half and we are adding $\frac{1}{2}$ more, the sum will be greater than 1.

Example 2: $\frac{4}{10} + \frac{1}{3} < 1$ and $\frac{4}{10} + \frac{1}{3} < \frac{1}{2}$ Since $\frac{4}{10}$ and $\frac{1}{3}$ are less than half, the sum will be less than 1. $\frac{4}{10} + \frac{1}{3} < 1$

Also $\frac{4}{10}$ needs $\frac{1}{10}$ to be a half. $\frac{1}{3}$ of a whole is greater than $\frac{1}{10}$ of the same whole, so adding $\frac{1}{3}$ more to $\frac{4}{10}$ will give us a sum greater than $\frac{1}{2}$. $\frac{4}{10} + \frac{1}{3} > \frac{1}{2}$

Example 3: $1\frac{2}{5} - \frac{2}{3} < 1$

We know $\frac{2}{5}$ is less than $\frac{1}{2}$ and $\frac{2}{3}$ is greater than $\frac{1}{2}$. We can't subtract $\frac{2}{3}$ from $\frac{2}{5}$ since $\frac{2}{3}$ is larger so we'll need to subtract $\frac{2}{3}$ from the one whole. $1 - \frac{2}{3} = \frac{3}{3} - \frac{2}{3} = \frac{1}{3}$

Since $\frac{1}{3}$ and $\frac{2}{5}$ are both less than half, we know when we combine the two fractions the answer will be less than 1.

Problem: Use >, < or = to make the following statement true.

Strategize to solve an addition or subtraction problem involving more than 2 fractions and/or mixed numbers.

Application Problem:

During lunch, Chris drinks $2\frac{3}{4}$ cups of milk. Allie drinks $\frac{3}{8}$ cup of milk. Carmen drinks $\frac{1}{4}$ cup of milk. How much milk do the 3 students drink?

$$2\frac{3}{4} + \frac{3}{8} + \frac{1}{4}$$
$$2\frac{4}{4} = 3$$
$$3 + \frac{3}{8} = 3\frac{3}{8}$$

Chris, Allie, and Carmen drank $3\frac{3}{8}$ cups of milk.

Assess Reasonableness of Solution:

John used $1\frac{3}{4}$ kg of salt to melt the ice on his sidewalk. He then used another $3\frac{4}{5}$ kg on the driveway. If he originally bought 10 kg of salt, how much does he have left? (This is an example of a multi-step problem.)

